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Abstract. In this paper we give general relativistic expressions for the angular momentum and rota-
tional kinetic energy of slowly rotating stars. These expressions contain contributions from the pre-
sure, gravitational red shift, and Doppler shift, and the motion of inertial frames. These contributions
are not negligible, e.g., there are stable neutron star models for which the angular velocity of inertial
frames at the center is about 70 % the angular velocity of the star. These expressions are useful in the
study of pulsars if pulsars are rotating neutron stars.

1. Introduction

In a series of papers, a method for treating slowly rotating fully general relativistic
bodies is developed.* In particular, the problem of a slowly rotating fully relativistic
spherical shell (originally considered by Thirring (1918) in the weak field limit) was
treated. The solution, valid even for strong gravitational fields, exhibits a dragging
along of the inertial frames by the shell. In the limit, as the mass (stress-energy) of
the shell becomes large compared to the other masses in the universe, the angular
velocity of the inertial frames becomes equal to that of the shell (Brill and Cohen,
1966; Cohen, 1965, 1967a, 1968a).

This method for treating rotating bodies in general relativity is also useful in astro-
physics. For example, it allows a fully relativistic treatment of rotating stellar models
and has been applied to such problems by various authors, e.g., Cohen and Brill
(1968), Hartle and Thorne (1968).

It has been suggested that pulsars are rotating neutron stars (Gold, 1968) and that
the loss of rotational kinetic energy of the pulsar in the Crab nebulae is the energy
source for the Crab (Finzi and Wolf, 1968).

Because typical neutron stars are quite dense (central density ~10'° gm/cm?), a full
general relativistic treatment is necessary. This is true for the equilibrium structure
calculations and the dynamical stability calculations. General relativistic terms also
contribute to the angular momentum (Cohen, 1967b, 1968b; Komar, 1962) and to
the rotational kinetic energy. In this paper, these quantities are computed and ex-
pressed in a form which is useful for astrophysical calculations.

2. Field Equations
In this section we treat slowly rotating stars. These are stars for which the ‘centrifugal’

* Cohen (1967a, 1967b, 1968a, 1968b), Brill and Cohen (1966), Cohen and Brill (1968).
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force acting on any element of the star is small compared to the gravitational force and
for which the velocity of any element of the star is small compared to that of light.
Such conditions are fulfilled for a typical neutron star of radius 13 km, mass 1.3 x 1033
gm, and rotational period 33 msec or more.

To describe such a star via general relativity, one must consider a line element more
general than the familiar Schwarzschild line element

ds®> = — 4> dt* + B> dr® + C* d0* + E*(d$ — Q d1)?, 6))

where 4, B, C, Eand Q are functions of r and 0 only (Cohen and Brill, 1968). For slow
rotation, the metric (1) can be put in the form

ds* = — e’ dt* 4 e* dr® + r* d0* + r*sin®0(d¢ — Q dr)?, )

with v, 4 and Q functions of r only (to first order in Q). Three of Einstein’s field
equations are identical with those for a non-rotating star

m, = 4nr’o, 3
G(m + 4r’p/c?)
r(r —2Gm/c*)’
p.=— (e + p/c*) v, )2, (5)

(Cohen et al., 1969), where the subscript r denotes partial differentiation with respect
to r. Here m is the mass, ¢ the density, p the pressure, ¢ the speed of light, and r a
radial parameter. In addition to these three equations, there is one additional equation
describing a slowly rotating star

[e~ 1240 ], = — 16mr* €4~ (g + plc?) (0 — Q) G/c?, (6)

?v,2 =

“

where w is the angular velocity of the star and Q is the angular velocity of the inertial
frames along the rotation axis. (The full set of equations describing rotating stars,
valid for strong gravitational fields and fast rotation is given by Cohen and Brill
(1968).) The angular velocity of inertial frames can be determined, e.g., by measuring
the angular velocity of the axis of a gyroscope. Off the rotation axis of the star, the
expression for the angular velocity of inertial frames is more complicated than it is
on the rotation axis (Cohen, 1968a). Unlike in Newtonian mechanics, the angular
velocity of inertial frames in the vicinity of a rotating body does not vanish (relative
to the inertial frames far from the body) since according to general relativity rotating
bodies drag along inertial frames (Cohen, 1965, 1967a; Thirring, 1918; Brill and
Cohen, 1966; Cohen and Brill, 1968). Such effects are in accordance with Mach’s
idea that inertial properties of space are influenced by the distribution of matter
(stress-energy) in the universe. For a discussion of such effect and the effect of other
matter in the universe see, e.g., Cohen (1968a) and the references cited there.

At first sight it may seem that the dragging along of inertial frames by rotating
bodies is of interest only in philosophical discussions of Mach’s principle (Mach, 1883).
However, in the following sections, it will be shown that the rotation of the inertial
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frames contributes to quantities of physical interest such as: angular momentum and
rotational energy of stars.

3. Conservation Laws

It is well known that, in Newtonian mechanics and special relativity, symmetries give
rise to conserved quantities. For example, momentum and energy conservation are
consequences of space and time translation invariance respectively ; angular momentum
conservation is a consequence of rotational invariance.

Such symmetries can be exhibited mathematically by showing that quantities remain
unchanged when one transforms from one point to another. If a quantity such as a
scalar remains unchanged when it is transported from one point to another, the set
of infinitesimal transformations which generate the transformation can be shown to
form a group (Spain, 1960). Because of this, once a symmetry group is found, the
machinery of group theory can be used to find conserved quantities.

Similarly, in general relativity, symmetry groups give rise to conserved quantities.
The group of transformations in general relativity which leave a given metric unchanged
is known as an isometry group. The isometry group associated with this symmetry
is generated by a Killing vector £, which satisfies the equation

éy;v_i—év;y:()a (7)

(Eisenhart, 1964 ; Schild, 1967).

A reader not familiar with Killing vectors may be wondering how a vector can
generate a transformation. As an example, consider the Killing vector associated
with space translation invariance in flat space. There are three such vectors, one along
each axis, but for definiteness consider the Killing vector along the x-axis £,=(0, 1,
0, 0). The operator &9, generates an infinitesemal transformation along the x-axis,
ie., f(x+e&)=f(x)+&d,f(x). Similarly, the operator e*“0, generates a finite trans-
formation

[} a"
¢f ()= T S f(x)=f (x4 o),

the second equality is just a Taylor expansion of f'(x +¢). Note that the operator e°J,
transforms £ (x) into f (x +¢). Because of the close connection between vectors and
generators of transformations, basis vectors are often denoted by partial derivatives
0, and the vector 4* by 4=A4"0,. For a detailed discussion of generators of transfor-
mation see, e.g., Chevalley (1950).

When combined with the conservation law of general relativity

T, =0 ®)

the Killing vector &* gives rise to a conserved quantity. (Equation (8) is often called
a conservation law since in the small velocity and Newtonian limit, it reduces to
conservation laws, e.g., for 4=0, it reduces to the familiar equation of continuity
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(conservation of mass)
V(QV) =— 00,

where ¢ is the mass density and V its velocity. Similar results are obtained for u=1.)
Contraction of the Killing vector £, with Equation (8) and integration over all
space-time yields

0= [ &1, av. ©)

Since £, is a Killing vector satisfying Equation (7), the integrand of Equation (9)
becomes a perfect divergence, i.e., {,T*";,=(£,T"");,—¢&,,,T*". The second term
vanishes since the stress energy tensor 7*” is symmetric and £,., is antisymmetric,
Equation (7). By using the four-dimensional form of the divergence theorem (Cohen,
1968a), the integral (9) can be transformed to an integral over the three-dimensional
surface of the four-dimensional space-time. If the source is bounded in space or falls
off sufficiently rapidly at spacial infinity, we find that the integral

I= f £,T" da, (10)
z

is independent of the space-like surface and, consequently, is conserved. For the
mathematical details see, e.g., Cohen (1968b), (1967a); Komar (1962).

In the following sections, Equation (10) will be used to find an expression for the
angular momentum of a rotating star.

4. Angular Momentum

In general relativity, the angular momentum of a body is constant if no external
forces act and if the body is sufficiently symmetric that it does not emit gravitational
radiation as it rotates. This constant of the motion can be obtained from Equation (10)
if the Killing vector associated with the rotation is given. In terms of an orthonormal
basis along the d¢, dr, df, and de —Q d¢ direction, this Killing vector is given by

& =10,0,0, E]. (11)
For a uniformly rotating body, the components of the 4-velocity U* are

U*=1[1,0,0,E(w — Q)/A] K, (12)
where
K=(1-E*(0—Q)P>A4 %72, (13)

On a space-like surface ¢ =const, the 3-volume element do, becomes

doy = BCE dr d0 d¢;
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and, consequently, only the 7°3 component of the stress-energy tensor (here and in
the sequel we use geometrized units (Harrison et al., 1965) to simplify the calculations
— i.e. mass in centimeter, radius in centimeters, time in centimeters, etc.)

T = (¢ + p) U*U" + pg"* (14)
ie.,
T° = (o + p) E(0w — Q) A™'K? (15)

enters Equation (10) which yields the angular momentum of the star

J= f (¢ + p) A"'BCE’K?*(w — Q) dr d6 d¢ (16)

t=const

when Equation (16) is integrated across the star. It is interesting to observe that the
pressure and the gravitational potential contribute to the angular momentum (16).
For a treatment of more general surfaces see, e.g., Cohen (1968b) and the references
cited there. The expression (16) reduces to a simple form for a slowly rotating star:

J =(8n/3) f (¢ +p)e"? M r*(w — Q) dr, 17

after integrating over angles. Here v/2 reduces to the Newtonian gravitational potential
in the Newtonian limit. The general relativistic expressions for the angular momentum
(16) and (17) have all of the usual properties of angular momentum in Newtonian
mechanics. Unfortunately, the concept of moment of inertia is not as useful in general
relativity as it is in Newtonian mechanics since a body rotating rigidly relative to an
observer at infinity will not necessarily be rotating rigidly relative to local inertial
frames. Stars can rotate rigidly and differentially at the same time depending on what
the rotation is measured relative to.

5. Rotational Energy

Besides nuclear energy and pulsational energy, the rotation of a star can store large
amounts of energy. It has been suggested (Finzi and Wolf, 1968) that the rotation of
a neutron star in the Crab nebulae is the source for the energy emitted by the Crab.
A loss of rotational energy would exhibit itself as a decrease in rotation rate of the
star. These authors suggest no mechanism for slowing down the star and such
questions will not be treated here. We will concern ourselves with obtaining the general
relativistic expression for the rotation energy of a star.

In the region at large distances from a star of any shape, the metric reduces to the
Schwarzschild metric if there is no gravitational radiation being emitted. Consequently,
the gravitational mass of such a star equals the Schwarzschild mass. The rotational
kinetic energy of a star is equal to the total mass of the rotating star minus the
Schwarzschild mass of the same star when it is not rotating. This rotational energy
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can be obtained by considering the line element for a rotating axially symmetric
star (1), and the field equation G°°=8xn7T°° which takes the form (Cohen and Brill,
1968)
—81T°° = B™'C™'[(C,/B), + (By/C)s + E~"(CE,/B), + E~" (BE,/C),]
+ (EQ,[24B)* + (EQ,/24C)*. (18)

For an axially symmetric stellar model, the coordinates can be chosen in such a way
that the metric coefficients take the form (to second order in Q) (Hartle and Thorne,
1968)

A=A+ f1(r)+ f2(r) ¥3(0),
B=(1=2m(r)r)""* + g(r) ¥3(0),

C=r+h(r)y3(0), (19)
E=Csin8,
Q=Q(r).

When these relations (19) are substituted into Equation (18) and the result integrated
with respect to 0, there results to second order in w:

m, = f T2 sin0 d6 d¢ + r*Q?/124°B* . (20)

The perturbations f,, g, and & drop, to second order in Q2 because of orthogonality
of spherical harmonics. Note that the gravitational mass m depends on the motion
of inertial frames Q as well as on the energy density 7°°.

The rotational kinetic energy can be obtained from this expression (20) when the
expression for the four-velocity (12) is substituted into the expression for the energy
density (14)

T =g+ (g0 + p) E?’ 47 * (0 — Q), (21)

and this Equation (21) is substituted into Equation (20) yielding

m, = f [0+ (¢ +p)E*A™*(0 — Q)*] ¥*sin6 dO d¢p + r*Q}[124%B>.
(22)

Anintegral equation for the rotational kinetic energy can be obtained if we substitute
into Equation (21)

m=m-+ m,, (23a)
and
0=20+g, etc., (23b)

where barred quantities represent unperturbed quantities and m,, etc. are perturba-
tions yielding from Equation (22)

7, = f or? sin 0 df d¢ (24)
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and
(my), = f [0, + (@ + §) E2A™ (w0 — ©)?] 2 sin 0 df dp + r*Q2[1247B2,
(25)
where Equation (24) is the familiar equation for the gravitational mass of the un-
perturbed (non-rotating) stellar model, while Equation (25) is an integral equation
for the rotational kinetic energy m,. Equation (25) can be solved if the density pertur-
bation g, is expressed in terms of unperturbed quantities and the kinetic energy m,.
This will be done below by using entropy and baryon conservation.

The entropy change dS is related to the change of internal energy dU and the work
done by the system p dV via the well-known relation (Zemansky, 1957)

TdS=dU + pdV, (26)

where T is the temperature, p is the pressure, and V is the volume of the system. For
convenience, consider N particles occupying a small volume V at an arbitrary point
in the system and assume that the various quantities are constant throughout the small
volume ¥ (the volume ¥V can be made small enough so that nothing changes much
within it). When the expression for the energy density

e=UlV 27
is substituted into Equation (26), we obtain
T dS|V = (e + p) (dV/V) + de. (28)

If the number of baryons N in the proper volume ¥V is not influenced by stellar rotation
and since the baryon number density # is related to the volume V by

n=N/|V, 29)
the change in baryon number density depends only on the change in proper volume
dn/n=—dV/V. (30)

Substituting this into Equation (28) and letting d.S vanish (for adiabatic process) we
find that

do/(e + p) = dn/n. (1)

From this (31), we obtain the relation between the energy density perturbation g,
and the baryon number density perturbation z, in the form

0:2/(¢ + p) = ny/n. (32)

Equation (32) reduces the complicated problem of finding the difference in energy
density between the rotating and non-rotating configurations g,, to the simpler problem
of finding the difference in baryon number densities #,. The latter problem is simpler
since the number of baryons is the same for the rotating and non-rotating configura-
tions and, consequently, only the volume element must be transformed.
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There are two contributions to n,: (1) Lorentz contraction and (2) the change in
geometry because of the change in gravitational mass (rotational kinetic energy con-
tributes to the gravitational mass). In finding baryon number density », in the frame
of the metric (1), use can be made of the relation

ndV =n,dy, (33)

between the number density » in the rest frame of the matter and that in the frame
of the metric (1).

Since the 4-volume element is invariant with respect to coordinate transformations,
the 3-volume elements are related

Jlgld*x = AdV,dt =dV dr, (34)
which implies that the baryon number densities are related via
n=n;dz/Adzt. (35)

The relation between the proper time 7 in the rest frame of the matter and the
coordinate time ¢ of the metric (1) can be found in standard texts (see, e.g., Landau
and Lifshitz, 1962; Mpgller, 1960).

dr/Adt = |(1 - }’kvk(_ goo)_l/z)2 - ?ijvivj(_ goo)_lw2 > (36)

where the 3-velocity vector v'=dx’/dt is given by

v=10,0, o, (37)
while y, and y;; are defined by

Yk = gOk/(_ 900)1/2 (38)
and

Yij = Gij + ViV (39)

where Latin letters have the range 1, 2, 3 when summed. Substitution of the metric
(1) into Equations (38) and (39) and these into Equation (36) yields

dr/Adt=1—E*A"* (0 — 2)*)2 (40)

to second order in w. When Equation (40) is substituted into Equation (35), we obtain
the relation between the baryon number density in the rest frame of the matter » and
that in the frame of the metric (1) with respect to which the star is rotating »,.

The baryon number density n, defined in Equation (33a), takes the form

n, = dN/dV, = AN/ BCE dr d d¢). (41)

Because the rotational energy contributes to the gravitational mass, the volume
element dV, is not equal to the volume element d ¥ of the same star when not rotating.
The relation between the baryon number density », and the baryon number density
of the non-rotating star 7z can be obtained by expanding B, C, and E in Equation (41)
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BVINE [l - BB~ C,CT — E,ET']. 42)

A substitution of Equations (42) and (40) in Equation (33) yields the baryon number
density in the frame of the matter (expressed in terms of unperturbed (barred) quanti-
ties and perturbations):

n=na[l—B,B™' = C,C' — E,E™' — E*’A™ (0 — Q)*/2]. (43)

The baryon number density perturbation is obtained by comparing Equation (43) and

. (44)
Substitution of the resultant value of m, into Equation (32) yields

0,=(e+p)[-E*4 *(0—Q)P2—B,B"' ~C,C ' —E,E™"]. (45

This equation can, in turn, be substituted into Equation (25) yielding an integral-
differential equation for the rotational energy m, as

m,), = f r?sin@ d0 d¢ [g + j]
x [E2A™ (w0 — Q)}2 —B,B™' = C,C™' —E,E™"]
+ r*Q?/124%B>. (46)

Integration with respect to 6, and ¢ reduces Equation (46) to the differential equation

(ms), = (24 7) 1*4™ @ — Q)2
—4n(g + p) rmyB* + r*Q2[124°B>.  (47)
This Equation (47) can be solved for m,. To do this we can use the relation
8nr(g +p) et = (A +9), (48)

which can be obtained by substituting Equation (19) into Equations (2) and (3) and
combining the latter two equations.
Substitution of Equation (48) into Equation (47) yields

- 4 -
[eP2m,], = ; (@ + p) r*e* " (0® — 2Qw + Q%) + r*Q}/124B.
(49)

Integration of Equation (49) yields an expression for the rotational kinetic energy

m, = (4nw?/3) f (¢ +p) pret=12 [(1 - Q/w)*]dr

a0

+ f r*Q? (124B)" ' dr,  (50)

0
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where R is the radius of the star. In the Newtonian limit, this reduces to
R
m, = (4nw?/3) f ort dr (51)
0

the familiar expression for the rotational kinetic energy of a slowly rotating spherical
body in Newtonian mechanics. The second integral in Equation (50) is difficult to
evaluate with a computer because of its infinite range of integration. This difficulty
can be circumvented, however, since an analytic solution is known in the region
exterior to the star (Cohen, 1965, 1967a; Brill and Cohen, 1966; Cohen and Brill,
1968). To evaluate the integral we only need the solution to first order in w:

A*=B"*=1-2m/r,

Q =2, (52)
giving
f r*Q?(12AB)™ " dr = J*/R;3. (53)
R

An expression for the rotational kinetic energy which is convenient for numerical
calculations (e.g., for rotating neutron star models) is obtained by substituting Equa-
tion (53) into Equation (50) in the form

R
m, = (4nw?/3) f (0 +p)r*BA ' [(1 — QJw)* ] dr
R 0
+ f r*Q2(124B)™ " dr + J?/R>. (54)

0

Note that the pressure, red shift, the change in volume element due to the curvature
of space, and the motion of inertial frames contribute to this expression for the
rotational kinetic energy of a slowly rotating stellar model. Numerical calculations
for neutron star models are in progress and will be presented elsewhere (Cohen and
Cameron, 1969).

6. Discussion

To facilitate the calculations performed in the preceding sections, geometrized units
(distances in cm, time in cm, etc.) were used. However, for astrophysical applications,
it is usually more convenient to use results which are expressed in familiar units. In
standard cgs units the angular momentum 1s given by

J = (8n/3) f (¢ + p/c*) BA™H(w — Q) r* dr, (55)
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and the rotational kinetic energy is given by

R
B = (4113 [ (¢ + pIC?) *BA™" [(0 — @]
0
R
+ f dr r*Q2C*(124BG)™" + GJ?/R*C?, (56)
0o

where g is the density, p the pressure, ¢ the speed of light, G the gravitational constant,
R the radius of the star, J its angular momentum. The quantities 4> and B? are
components of the metric (1) which can be found by solving Equations (3)—-(5). The
angular velocity w of the star is given relative to an observer at infinity while the
angular velocity of inertial frames along the rotation axis € is given relative to the
same observer and can be found by integrating Equation (6). It is of interest to note
that both the angular momentum J and the kinetic energy E,,, contain contributions
from the pressure and from the rotation of inertial frames.

According to general relativity (and the scalar tensor theory also), rotating bodies
drag along the gravitational field and the inertial frames. For rotating dense stellar
models, the rotating gravitational field can make a non-negligible contribution to the
rotational energy. Such results have been found for neutron star models (Cohen and
Cameron, 1969). The last term in Equation (56) is the contribution to the rotation
energy from the gravitational field outside the star.

When Equations (55) and (56) are applied to neutron stars (Cohen and Cameron,
1969), they give the angular momentum and the rotational kinetic energy stored in
such stars.
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